The Utilization of a New Yellow Light Laser (578 nm) for the Treatment of Class I Red Telangiectasia of the Lower Extremities

NEIL S. SADICK, MD, FACP, FAACS* AND ROBERT WEISS, MD†

*Department of Dermatology, Cornell-Weill Medical College, New York, New York, and †Department of Dermatology, Johns Hopkins University Medical School, Baltimore, Maryland

BACKGROUND. A dual-wavelength approach is necessary in order to achieve consistent results when utilizing lasers and intense pulsed light sources to treat red and blue lower extremity vessels. In this regard, short-wavelength technologies (500–800 nm) may be employed to treat red telangiectasia of less than 2 mm on the lower extremities.

OBJECTIVE. To demonstrate a new yellow light laser utilizing a copper bromide medium and its potential efficacy in the treatment of red lower extremity telangiectasia of less than 2 mm.

METHODS. Forty-six women (mean age 37 years) were treated in two private practice settings with a 578 nm yellow light laser with a circulating cooling window (1–4°C). Class I red telangiectases of the thighs 1.5 mm or less in diameter were considered for treatment. Patients were treated with up to three treatments at 6-week intervals on a 5 cm² surgical area of vessels utilizing a fluence of 50–55 J/cm². Results were analyzed by macrophotographic imaging, double-blinded observer evaluation/optical chromatography, and a patient evaluation scale.

RESULTS. An average of 1.7 patient treatment sessions produced significant clearing of 75–100% in 71.8% of patients. The mean erythema index showed significant lightening (51–65a/1001) in the study population. Finally, 76.1% of patients reported great satisfaction with the results of their treatment session.

CONCLUSION. A new 578 nm copper bromide (CuBr) yellow light laser produces excellent results in eradicating red telangiectases of the lower extremities that are less than 2 mm in diameter.

IMPROVED RESULTS in the laser/intense pulsed light (IPL) treatment of lower extremity blood vessels has been accomplished by a better understanding of photothermal-endothelial interactions as well as by improved technologies directed toward this goal. A major component toward this end has been a better understanding of varied treatment approaches that are necessary in order to efficiently eradicate small red vessels, which are located superficially on the skin surface (telangiectases), versus blue vessels (venulectases) and small reticular veins, which are usually located deeper within the dermal plexus. To this end, short-wavelength laser IPL technologies incorporating short yellow wavelengths between 532 and 600 nm have been found to be most efficient in eradicating small red vessels located on the lower extremities.

It is with these considerations in mind that the present study was undertaken in order to evaluate a new yellow light laser (578 nm) (Pro Yellow, Asclepion-Meditec, Santa Ana, California) that utilizes copper bromide (CuBr) as its active medium. The present study examines its potential efficacy in the treatment of class I red telangiectases less than 1.5 mm in size.

Research Design

Forty-six women (mean age 37 years) with Fitzpatrick skin types I–IV were treated with a 578 nm yellow light laser employing a static circulating cooling window (1–4°C) (Figure 1). Cooling was applied for 1 minute prior to treatment and during treatment. All patients were off hormone therapy for at least 6 weeks prior to entrance into the study. Class I red telangiectases located on the thighs and 1.5 mm or less in diameter were considered for treatment. Vein diameter was measured by a vein gauge device. Treatment parameters were as follows: fluence 50–55 J/cm², spot size 1.5 mm, on-time 300 msec, off-time 75 msec. The number of treatments required in an attempt to produce 100% clearing of a 5 cm² grade of vessel was analyzed. A maximum of three treatments were performed at 6-week intervals. Lesser improvement in terms of reducing vessel number and size was evaluated on the following scale: A, 75–100% clearing; B, 50–75% clearing; C, 25–50% clearing; D, 1–25% clearing; E, worse or no change. Treatment was assessed by macrophotographic digital imaging by two
Results (Table 1)

In this study the 578 nm CuBr laser at a mean fluence of 53 J/cm² produced 75–100% clearing in 71.8% of patients after a mean of 1.7 treatments, as documented by clinical and photographic evaluation (Figure 2). In the author’s clinical experience at least 75% of vessels must be eradicated in order for significant patient satisfaction to be achieved.

The colorimeter measures the redness (a⁺), greenness (a⁻), yellowness (b⁺), and blueness (b⁻) of a given target chromophore [ie, oxygenated (red) versus deoxygenated (blue) hemoglobin] on a 0–100 scale (lighter → darker hue). The mean erythema index showed significant lightening (51–65 a⁺). Only two patients did not have significant lightening as manifested by this technique. Two patients with significant vessel clearing (grade A, 75–100%) are illustrated in Figures 3 and 4. Red vessels responded with the greatest efficacy, while blue vessels were refractory to treatments.

Side effect profiles as documented in the present study were minimal. Two of the study patients (4.4%) developed mild epidermal crusting that healed spontaneously without scarring. Three patients (6.5%) developed temporary hyperpigmentation, which resolved in all cases when examined at the end of the study. No patient in the present study developed telangiectatic matting as a sequela of the treatment program. In the posttreatment questionnaire, 76.1% of patients evaluated displayed great satisfaction with the results of their treatment program when evaluated 3 months after their final treatment session (Figure 5).

Discussion

The present study supports the clinical efficacy of treating red telangiectases of the lower extremities with the 578 nm CuBr laser system. The results demonstrate excellent clearance with a minimal number of treatments and an extremely low complication profile.

As has been previously reported, a dual-wavelength approach to laser/IPL treatment of leg vessels produces optimal results with the presently available technologies.4,5 Shorter wavelengths (500–600 nm) such as the 578 nm yellow light reported in the present study are most efficient in the treatment of class I oxygenated reddish telangiectases, while longer wavelengths (800–1100 nm) are most efficient in treating class II–III deoxygenated blue venulectases and reticular veins. Table 2 outlines the available technologies that may be employed utilizing these treatment principles.

Vessel color, size, thickness, and depth are major parameters that must be considered when choosing an appropriate system for treating lower extremity vasculature. Blue and red vessels of the lower extremities have varied clinical and physiologic structural characteristics (Table 3). The redness or blueness of lower extremity vessels may be determined by several factors, including the Tyndall effect, degree of oxygenated versus deoxygenated blood, vessel size, thickness and depth, and family background variations.4,6

Previous short-wavelength technologies have been reported to produce inconsistent results in the treatment of red telangiectasia less than 1 mm in diameter on the lower extremities. The 532 nm KTP laser has been shown to be effective, but produces variable results in this clinical setting.7–10 Extended pulse durations have been shown to be associated with an increased complication profile. The 585–600 nm pulsed dye lasers (PDLs) have been shown to produce inconsistent results with poor patient satisfaction because of prolonged purpura.11–18 Newer nonpurpuric-producing technologies employing extended pulse durations are presently being studied. IPL sources (500–1200 nm) have also been shown to produce variable results in this clinical setting. A steep learning curve with high user variability and a relatively high complication profile have reduced the popularity of this technology in the treatment of lower extremity vessels.19–21
Finally the long-wavelength technologies, that is, 1064 nm Nd:YAG lasers have been found to be refractory in treating red telangiectasia less than 2 mm in diameter.22 Higher-fluence, short pulse duration op-
Clearing Grade

Figure 2. Distribution of clearing grades (n = 46) for patients treated with the 578 nm CuBr laser; 71.8% of patients achieved 75–100% clearing of red vessels less than 2 mm in maximum diameter after an average of 1.7 treatment sessions.

Of note, the present study defined 75–100% clearing of vessels to be a cutoff for successful treatment results. This is corroborated by previous studies as being a necessary cutoff point for successful treatment results.22,23 This critical improvement parameter is substantiated both by the patient satisfaction scale presented herein as well as the diminution in erythema index as measured by optical chromatography.
SADICK AND WEISS: YELLOW LIGHT LASER FOR TELANGIECTASIA 25

Conclusion
A new 578 nm CuBr yellow light laser produces excellent results in eradicating red telangiectases of the lower extremities that are less than 2 mm in diameter. Efficient clinical photothermolysis with a minimal number of treatments and a low complication profile make this an excellent alternative for treating these difficult to cannulate vessels. A bimodal wavelength approach is important in providing efficient clearing of red and blue lower extremity vessels.

References

Figure 5. Patient satisfaction scores 3 months after completion of 578 nm CuBr leg vein study; 76.1% of patients reported great satisfaction with their treatment results.

Table 2: Lasers/IPL Source Available for Treatment of Small-Vessel Disorders

<table>
<thead>
<tr>
<th><400 μm</th>
<th>>400 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intense pulsed light source (500–1200 nm)</td>
<td>Nd:YAG laser (1064 nm)</td>
</tr>
<tr>
<td>Pulsed dye laser (585–600 nm)</td>
<td>Diode laser (800 nm)</td>
</tr>
<tr>
<td>KTP laser (532 nm)</td>
<td>Alexandrite laser (755 nm)</td>
</tr>
<tr>
<td>Copper bromide laser (578 nm)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Red versus Blue Lower Extremity Vessels

<table>
<thead>
<tr>
<th>Red Vessels</th>
<th>Blue Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial</td>
<td>Deep</td>
</tr>
<tr>
<td>Small diameter</td>
<td>Large diameter</td>
</tr>
<tr>
<td>Thin intima</td>
<td>Thick intima</td>
</tr>
<tr>
<td>↑ Oxygenated hemoglobin</td>
<td>↑ Deoxygenated hemoglobin</td>
</tr>
<tr>
<td>– Tyndall effect</td>
<td>+ Tyndall effect</td>
</tr>
<tr>
<td>– Background scatter</td>
<td>+ Background scatter</td>
</tr>
</tbody>
</table>